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Abstract 
 

In the word-learning domain, both adults and young children 
are able to find the correct referent of a word from highly 
ambiguous contexts that involve many words and objects by 
computing distributional statistics across the co-occurrences 
of words and referents at multiple naming moments (Yu & 
Smith, 2007; Smith & Yu, 2008). However, there is still 
debate regarding how learners accumulate distributional 
information to learn object labels in natural learning 
environments, and what underlying learning mechanism 
learners are most likely to adopt. Using the Human 
Simulation Paradigm (Gillette, Gleitman, Gleitman & 
Lederer, 1999), we found that participants’ learning 
performance gradually improved and that their ability to 
remember and carry over partial knowledge from past 
learning instances facilitated subsequent learning. These 
results support the statistical learning model that word 
learning is a continuous process. 
 
Keywords: statistical learning; word-referent mapping; 
learning mechanisms 

 
Introduction 

Many recent studies have shown that both adults and 
children acquire new vocabulary by using word-object co-
occurrences to discover which linguistic labels map on to 
which objects (e.g. Yu & Smith, 2007). Despite the fact the 
natural learning environment is noisy and ambiguous, 
human learners are still able to keep track of multiple 
possible word-object pairings simultaneously (Yurovsky, 
Smith, & Yu, 2013). They continuously store and update the 
word-object co-occurrences across word learning moments 
and make statistically appropriate decisions based on 
aggregated statistics (Smith, Suanda, & Yu, 2014). 

However, this aforementioned cross-situational word 
learning strategy and its supporting associative learning 
model (AL) have been challenged by another learning 
model called the hypothesis testing model (HT). Although 
both computational modeling results and behavioral data 
provide evidence showing that the two models do interact to 
some degree during word learning and the learning 
outcomes generated by these two models can be similar (Yu 
& Smith, 2012; Smith et al., 2014; Romberg & Yu, 2014), 
they do suggest fundamentally different learning pathways 
(Trueswell, Medina, Hafri, & Gleitman, 2013). One major 
difference between these two models is how learners 
process past information when learning object labels in 

subsequent moments. The AL model suggests that learners 
can keep track of multiple co-occurrences of object-label 
mappings in one naming situation. Because a label and its 
correct referent are likely to co-occur more consistently than 
do other pairs, with enough exposure, the correct mapping 
can be accomplished by using cross-trial statistical relations 
(Yu & Smith, 2007). A more recent study supports the AL 
model by showing that word learning is not an “all-or-none” 
process. Instead, it is an incremental process that involves 
forming partial knowledge of word-object associations 
(Yurovsky, Fricker, Yu, & Smith, 2014). Therefore, labels 
are learned gradually by accumulating knowledge from past 
learning experience. However, the HT model suggests that 
learners only make one hypothesis on an object-label 
pairing in one context. If this hypothesis were confirmed in 
later contexts, it would be considered as learned knowledge. 
If the hypothesis were rejected, then learners would pick 
another hypothesis from scratch and repeat the process until 
getting the correct mapping (Medina, Snedeker, Trueswell, 
& Gleitman, 2011; Trueswell et al., 2013). Thus, the HT 
model supports a “fast mapping” process with fewer 
exposures whereas the AL model suggests gradual statistical 
learning with lots of data.  

Not only do these two competing mechanisms define 
statistical learners very differently, the experimental 
paradigms used to support these two models are quite 
different as well. For a typical adult study that supports the 
AL model, participants are asked to learn object and word 
mappings through a series of learning trials wherein each 
trial contains multiple pseudowords and multiple novel 
objects without information about which words map on to 
which objects. While the cross-situational learning paradigm 
provides us useful data on how learners process information 
in ambiguous learning situations, one remaining question is 
whether learners employ the same learning strategy in the 
real world as real-life learning moments can be much more 
uncertain and noisy than laboratory tasks. One recent study 
done by Medina et al. (2011) used the Human Simulation 
Paradigm (Gillette et al., 1999) to study whether adults are 
able to learn gradually by accumulating evidence from 
multiple naturalistic learning instances from child-parent 
interactions (details described in the method section below). 
What they found was that incremental learning from 
multiple ambiguous learning moments did not occur. 
Instead, successful word learning depended on the presence 
of unambiguous learning moments. Participants learned the 
best when the unambiguous learning moments happened 
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early during training, suggesting that word learning requires 
an initial “one trial learning” step followed by a 
confirmatory process (Trueswell et al., 2013).  

However, Yurovsky et al. (2013) followed Medina et al.’s 
method and found very different results. Instead of studying 
word learning from only the observer’s perspective, they 
recorded training videos from both the child’s view 
(captured by a head-mounted camera) and the observer’s 
view (captured by a tripod-mounted camera) in order to 
study whether adult participants can learn from ambiguous 
learning events after viewing multiple child’s view naming 
moments. Previous studies with head-mounted cameras 
have shown that children’s visual field is selective and only 
includes one or a very few dominant objects at a naming 
moment. Therefore, naming events seen from the child’s 
view videos may be less ambiguous than those seen from 
the observer’s view, which may facilitate cross-situational 
learning. The results demonstrated that participants’ 
learning performance improved significantly after watching 
multiple highly ambiguous child’s view videos but not after 
when the same naming events were seen from the observer’s 
perspective. Thus, statistical aggregation may indeed 
characterize learning from the kind of naming events 
children experience; learning may not necessarily require 
unambiguous learning moments (Yurovsky et al., 2013).  

Given the conflicting findings from previous literatures, 
in the current study we aim at investigating the underlying 
mechanisms of how learners process information across 
multiple learning contexts with the following questions: 1) 
Do learners gradually accumulate knowledge from multiple 
naturalistic naming moments? 2) Are ambiguous learning 
events enough for successful cross-situational learning? Are 
unambiguous learning instances necessary? 3) How do 
unambiguous learning trials interact with ambiguous 
learning trials, and how do they influence learners’ 
performance? To answer these questions, our design 
followed the Human Simulation Paradigm to closely 
simulate learning moments in the real world. Meanwhile, 
we systematically selected and manipulated a set of videos 
that vary in their ambiguity, allowing us to measure and 
analyze participants’ learning patterns trial-by-trial in order 
to examine how statistical learning unfolds over time. 
Experiment 1 was designed to provide a baseline of learning 
performance for individual naming moment; Experiment 2 
focused on statistical learning solely from ambiguous 
learning instances; and Experiment 3 focused on 
information integration through a set of interleaved 
ambiguous and unambiguous learning moments.  

 
Experiment 1 

In order to examine the detailed word-learning patterns, we 
first selected a set of naming instances from the video 
corpus collected by Yurovsky et al. (2013) for their original 
study. The videos included play sessions from eight parent-
child dyads. Parent-child dyads were asked to play naturally 
with 25 toys for about 10 minutes while their interactions 

were recorded by a tripod-mounted camera and a head-
mounted camera in order to get both the observer’s view 
and the child’s view at each naming moment. The current 
study only used videos from the child’s view because 
ultimately only visual inputs perceived by the child enter 
into the learner’s cognitive system.  

The goal of Experiment 1 was to provide a baseline 
measure of the ambiguity of naming events. Following 
Medina et al. (2011) and Yurovsky et al. (2013), we 
replaced each object names in the videos with an identical 
beep to measure the baseline information of each video seen 
in isolation. However, instead of asking participants to type 
back the names of the referents as in previous studies, we 
made the test trials more straightforward by giving 
participants a forced-choice test of learning performance. 
We believed that this testing paradigm would reduce the 
demand on vocabulary retrieval and avoid potential 
disagreements during response coding, thus provide us a 
cleaner and more reliable measure of learning. The purpose 
of Exp 1 was to get a baseline measure of the ambiguity of 
each naming video by using the new forced-choice test.  
 
Participants. Seventeen Indiana University undergraduates 
(4 Male, Mage  = 19.82 SDage = 1.47) participated in exchange 
for course credits. None had participated in other cross-
situational word learning experiments.  
 
Materials. Ninety-six child’s view naming moment 
vignettes were selected from the video corpus. The correct 
referents were twelve different toys (e.g. elephant, mickey, 
tiger, etc), each of which had eight naming instances from at 
least four different parent-child dyads. Based on previous 
baseline data reported in Yurovsky et al. (2013), 3 of these 8 
naming instances (Figure 1) were highly unambiguous (M = 
.98, SD = .04) and 5 of them were highly ambiguous (M = 
.11, SD = .13). These 96 vignettes were grouped into 8 
blocks. Twelve vignettes in each block referred to 12 
different toys. Vignettes were pseudorandomized within 
block and the ambiguity of vignettes did not follow any 
specific order.  

(A)                                          (B) 
 
 
 
 
 
 
 
 
Figure 1: Both highly unambiguous (A) and highly 
ambiguous (B) vignettes were used for all 3 experiments. 
The named object “mickey” can be easily identified in (A) 
as the dominant object in view, but not in (B) which 
contains multiple competing objects at the naming moment.  
 

For each naming instance, the original sound was muted 
and the toy name was replaced by a beep at the onset of the 
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label. Most vignettes were 5 seconds long, with the name’s 
onset occurring at exactly the third second. Two more 
seconds were added to the vignettes if mothers said the toy 
name again within 2 seconds after the first naming instance. 
Seven of the 96 vignettes included two naming instances 
and two included three naming instances. Four additional 
vignettes were included as examples. None of the correct 
referents in these examples were targets in actual training. 
The testing stimuli were 25 color photos of all toys given to 
the parent-child dyads during the free-play session. Images 
were displayed on a white background, in a 5x5 grid.  
 
Procedure. Participants were instructed to watch the 
vignettes and identify the objects that correspond to the 
beeps. They were notified that for each test trial, they would 
see 25 pictures on the screen and they needed to choose the 
most likely referent by clicking on the picture. No feedback 
would be given. Participants then proceeded to see four 
sample vignettes, each followed by a testing trial. Once they 
were familiar with the study procedure, they were prompted 
to begin the actual experiment. Short breaks were given 
after the 2nd, 4th and 6th block. 
 
Results and Discussion. The baseline results found using 
the forced-choice test was similar to the results of the 
original study (Yurovsky et al., 2013). Accuracy on the 
unambiguous trials was high (M=.94, SD=.07, Mmin=.71; 
Mmax=1) and accuracy on the ambiguous trials was low 
(M=.14, SD=.16, Mmin=0; Mmax=.59). This result suggests 
that the forced-choice test is a reliable measure to use for 
further learning tasks and these 96 vignettes are 
representative cases that resemble hard and easy learning 
instances in real life.  
 

Experiment 2 
To explore whether learners aggregate past knowledge 
across multiple ambiguous learning events, we asked 
participants to learn object names by observing a set of 
ambiguous vignettes and to make guesses on a trial-to-trial 
basis. If participants do carry over their previous 
knowledge, then we should see an incremental increase in 
guessing accuracy.  
 
Participants.Twenty-six Indiana University undergraduates 
(7 Males, Mage = 19.08, SDage = 1.20) participated and 
received course credits. None had participated in the 
previous baseline study or other cross-situational word 
learning experiments.  
 
Materials. The same 96 vignettes used in Exp 1 were used 
in Exp 2. These 96 vignettes were divided into 12 blocks. 
Each block had 8 different vignettes all referring to the same 
toy. In any given block, the first 5 vignettes were ambiguous 
and the last 3 were unambiguous. The purpose of adding 3 
unambiguous trials at the end was to measure how well 
people learn in unambiguous learning moments, and we 
expected participants to perform well with those easy cases.  

Twelve one or two-syllable novel word labels (e.g. agen, 
gree, hage, etc) were recorded by a female native speaker of 
English. Instead of beeps, the novel word labels were now 
inserted to correspond to times in the original interactions 
that mothers used the object’s English labels. Each toy had a 
unique label. The testing stimuli were the same as Exp 1. 
 
Procedure. Participants were told that they would be trying 
to learn some words for some familiar objects in a new 
language. They would do this by watching mothers playing 
with their children and trying to guess which object the 
mothers were naming using the new label by choosing a 
most likely answer after each video. Testing instructions 
were the same as Experiment 1. After seeing the examples, 
participants were first presented with the first block of 8 
vignettes. They were told that mothers in these 8 videos 
were naming the same object. Throughout the 8 testing 
trials, they were allowed to change their guess at any given 
trial. However, if they believed their previous answer was 
correct, they could choose the same answer again. They 
were not allowed to go back and change their previous 
answers and they were not aware of the ambiguity of each 
vignette. After each block, a prompt would appear to remind 
them to get ready for the next block of trials. Again, no 
feedback would be given. 
 
Results and Discussion. Because we are interested in 
whether participants accumulate knowledge across 
ambiguous naming instances, we mainly focused on guess 
accuracy for the first 5 trials, which were all highly 
ambiguous trials. Figure 2 shows response accuracy for each 
trial, averaged across the 12 objects. Participants’ responses 
on the first trial (M1 = .23, SD1 = .16) were low but still 
higher than baseline. Because of the block design of the 
current study, the mean first-trial accuracy was calculated 
by aggregating guesses across blocks. Participants tended to 
achieve better learning performance in later blocks, which is 
additional evidence on statistical cross-situational learning 
across multiple target words. The topic of cross-word 
statistical integration is worth future studies by itself. 
Nonetheless, the present study focuses on information 
aggregation from multiple learning instances of the same 
word.  

Because Exp 2 gave participants the opportunity to make 
their guesses based on what they have learned before, we 
asked whether their accuracy improved significantly across 
trials. We fit a mixed-effects logistic regression predicting 
accuracy from trial number and baseline accuracy from 
Experiment 1 with a random effect of subject. This model 
had a highly-significant main effect of trial number (β=.29, 
p<.001) over and above the effect of baseline accuracy 
(β=2.42, p<.001), indicating significant learning across 
trials. Figure 2 shows this improvement, ranging from 23% 
accuracy on trial 1 to almost 50% on trial 5. This dramatic 
improvement suggests that word learning is a continuous 
process that learners make progress gradually by integrating 
what they have learned before. This result contradicts the 
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HT model arguing that highly ambiguous learning moments 
are not very useful as they might not be remembered over 
time to improve learning (Medina et al., 2011).  
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Figure 2: Mean accuracy (± 1 SE) across 5 ambiguous naming 
instances and baseline accuracy from Exp 1.  
 

As expected, the mean accuracies for the 3 unambiguous 
trials (6th to 8th) at the end of each block were very high (M6 
= .83, SD6  = .38; M7  = .90, SD7  = .30; M8  = .95, SD8  = .23).  

Knowing that prior knowledge plays an active role in 
word learning, we further investigate to what degree 
learners’ guesses depend on their previous experience. We 
calculated their learning performance conditioned on 
whether or not their previous guess was correct. When 
participants guessed the previous trial correctly, they were 
more likely to guess the current trial right (M = .74, SD = 
.29) compared to when they got the previous trial wrong (M 
= .20, SD = .12). To determine whether this difference was 
significant, we fit a mixed effect model as before, but this 
time added an additional main effect of Previous Trial, 
which was coded as -1 if the previous trial was incorrect, 1 
if it was correct, and 0 for the participant’s first trial. All 
previous factors remained significant, but additionally 
previous trial accuracy was a highly significant predictor (β 
= 1.49, p < .001). 

Were participants learning even on trials for which they 
gave an incorrect answer? We subset the trials from 
Experiment 2 to just those following incorrect responses and 
asked whether accuracies on these differed from baseline 
accuracies on the comparable videos (mixed effects model: 
accuracy ~ experiment + (1|video) + (1|subj). This model 
found a significant effect of experiment, indicating even 
when participants failed to get the correct answer for the 
previous trial, their current trial accuracy was still 
significantly above baseline (β = .46, p < .01). This finding 
suggests that without getting any feedback, learners used 
their prior knowledge to guide their current decision. They 
tended to use the previous accurate information in a more 
efficient way by choosing the same correct answer again. 
Even if their previous answer was wrong, they were still 
able to carry over partial knowledge that would allow them 
to improve their learning performance. This finding again 
contradicts Medina et al. (2011)’s finding showing that 
when participants guess incorrectly on a learning trial, their 

guessing accuracy is at chance at the very next learning 
situation indicating no knowledge of previous contexts. 

One distinction between associative learning and 
hypothesis testing is that associative learners store and use 
lots of data – all prior experiences through the course of 
learning, while hypothesis testing learners only update their 
current hypotheses trial-by-trial. To measure how much 
learning depends on prior experiences, we examined 
participants’ learning performance in the current trial 
conditioned on the proportion of correct answers from all of 
the prior trials for the same word. The analysis revealed a 
clear pattern showing that as participants’ total number of 
previous correct trials increases, their performance on the 
current trial also improves (Figure 3).  For example, at the 
second trial, participants who guessed correctly on their 
previous trial (M = .67, SD = .39) were more accurate on the 
current trial than those who guessed incorrectly on the 
previous trial (M = .20, SD = .16, t(22) = 6.34, p < .001).  
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Figure 3: Mean accuracy across vignettes at each trial. Bars 
represent total number of previous correct trials. 

 
To quantify this effect of accumulated learning as a 

continuous variable, we added another factor to the mixed 
effects model—the proportion of previous trials on which 
the participant was successful. An ANOVA showed that this 
addition significantly improved the model’s fit (χ2 = 1139, p 
< .001). Proportion of previously correct trials was a 
significant predictor of accuracy over and above the 
contribution of previous trial accuracy (β = 23.38, p < .001). 
This finding reveals that learners not only carry over 
knowledge learned from the immediate previous learning 
trial, they also encode and use all their past learning 
experiences in highly ambiguous learning contexts, which 
again suggests that cross-situational learning is a cumulative 
and continuous process that involves tracking and 
integrating past contexts. 

 
Experiment 3 

Because real life situations often involve both ambiguous 
and unambiguous learning moments, we next investigate 
how these two types of learning instances interact with and 
influence each other. 
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Participants.Twenty-six Indiana University undergraduates 
(11 Males, Mage = 20.27, SDage = 2.32) participated in 
exchange for course credits. None had participated in 
Experiment 1 or 2 or other similar experiments.  
 
Materials. The same materials used in Experiment 2 were 
used again in Experiment 3, but the trials within each block 
were re-arranged. The overall design was to have 1 
unambiguous trial followed by 2 ambiguous ones, so we put 
the preselected 3 Unambiguous trials (U) at the 1st, 4th and 
7th positions and the other 5 trials were Ambiguous (A). The 
whole sequence is composed as U-A-A-U-A-A-U-A. In this 
way, ambiguous and unambiguous trials are interweaved.  
 
Procedure. The procedure was the same as Experiment 2. 
 
Results and Discussion. We calculated mean guessing 
accuracy for the first 6 trials across items, which consisted 
of two sets of “U-A-A” sequences (Figure 4). There are 
three distinctive patterns: (1) As expected, participants’ 
responses were highly accurate at unambiguous trial 1 (M1 = 
.93, SD1 = .16) and trial 4 (M4 = .94, SD4 = .14).   In 
addition, we did not find any significant learning difference 
between the two unambiguous trials (trial 1 and 4, t(25) = 
.36, ns). This is contrary to Medina et al. (2011)’s finding 
that ambiguous learning moments hurt learners’ 
performance on later unambiguous learning moments. (2) 
Accuracy on trial 2 (M2 = .64, SD2 = .34) and trial 5 (M5 = 
.73, SD5 = .35) is much higher than baseline. Thus, there is a 
significant improvement of learning on an equally 
ambiguous naming situation after an unambiguous one. (3) 
There is a significant improvement from trial 3 (M3 = .63, 
SD3 = .07) to trial 5 (t(25) = 4.2, p < .001), suggesting that 
participants gradually improved their learning performance 
with more learning trials.                         
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Figure 4: Mean guessing accuracy (± 1 SE) across the first 6 
naming instances and baseline accuracy for both ambiguous 
and unambiguous trials from Exp 1. 

To understand how ambiguous and unambiguous 
information is integrated trial-by-trial, we examined 
accuracy on the ambiguous learning trials (trial 2 and 5) that 
immediately followed the unambiguous instances (trial 1 

and 4, see Figure 5A) and the ambiguous learning trials 
(trial 3 and 6) that immediately followed other ambiguous 
instances (trial 2 and 5, see Figure 5B). Data were further 
split by whether learners got the previous trial right or not. 
Guessing responses on trial 2 and 5 were collapsed because 
they were at the same position in the “U-A-A” sequence and 
trial 3 and 6 were also combined for the same reason.  
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Figure 5: Mean accuracy of current trial as a function of 
whether participants answered the previous unambiguous trial 
(A)/ambiguous trial (B) correctly or not. Ten participants 
contributed to (A) and 22 participants contributed to (B). 

 
When the previous trial was unambiguous, participants’ 

response accuracy on the following ambiguous trial was 
higher (M = .61, SD = .35) when they got the unambiguous 
trial right than when they got it wrong (M = .23, SD = .42, 
t(9) = 3.16, p = .01). To test whether each was significantly 
above baseline, we fit a mixed-effects model as in Exp 2 to 
determine if responses in Exp 3 were different from those 
on comparable trials in Exp 1. This effect was significant for 
trials following correct responses (β = 4.64, p < .001), but 
not for trials following incorrect responses (β = -.50, p = 
.51). This suggests that if participants missed the “obvious” 
cues from easy learning moments, they were not able to 
carry over any useful information that could potentially 
benefit subsequent learning.   

However, when both the previous and current trials were 
ambiguous, the pattern of responses was similar to the 
finding of Experiment 2. Participants’ learning performance 
was significantly better when they made a right guess (M = 
.68, SD = .36) on the previous trial than a wrong one (M = 
.39, SD = .33, t(21) = 4.00, p = .001) and both scores were 
above baseline  (by mixed-effects model as above, post-
correct β = 5.48, p < .001, post-incorrect β = .58, p < .001). 
This finding again supports the statistical learning model 
that learning involves continuous interactions of knowledge 
on a moment-to-moment basis. From the current design, it is 
clear that remembering and carrying over partial knowledge, 
despite the uncertainty of the information, could facilitate 
learning and partial knowledge can be especially helpful 
when the learning situations are ambiguous. This finding is 
also consistent with previous work showing that partial 
knowledge learned from previous experience may be 
leveraged incrementally to bootstrap learning (Yurovsky, et 
al., 2014). 
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General Discussion 
To answer the study questions of how learners acquire 
correct word-object mappings through multiple naturalistic 
naming situations and whether unambiguous instances 
facilitate learning, we found that words are learned 
gradually by accumulating information across multiple 
naturalistic learning situations, and do not change suddenly 
from “unknown” to “known.” Although there is no doubt 
that learners achieve the highest learning performance when 
the naming moments are unambiguous, this does not mean 
that adults and children have to rely heavily on these 
“perfect” moments to learn words. Instead of focusing on 
the one-trial learning procedure that depends on locking in 
to a word’s correct label upon first encounter, word learning 
is more likely to be a continuous process that not only 
benefits from fast mapping, but also from aggregating 
statistics from past learning experiences. 

Although successful fast-mapping of a word to its correct 
referent emerges quite early in development, successful 
retention of this mapping appears significantly later: 24-
month-old infants show no evidence of learning after only 5 
minutes delay (Horst & Samuelson, 2008; Bion, Borovsky, 
& Fernald, 2013). Results from studies with 3-year-old 
children and adults also suggest that despite participants’ 
ability to quickly form a new word-object mapping and 
perform well on an immediate test, they forget words over 
time in a curvilinear fashion (Vlach & Sandhofer, 2012). 
These results raise questions of whether the fast mapping 
strategy would be sufficient to help learners turn novel 
names into known ones for later retrieval or it is just an 
early disambiguation skill that does not directly relate to 
word learning (McMurray, Horst, & Samuelson, 2012). This 
is consistent with the learning pattern seen in Experiment 3, 
Even though learners achieved high accuracy in 
unambiguous learning trials (one-short learning, etc.), their 
learning performance dropped significantly in subsequent 
ambiguous contexts in which they had to retrieve their 
previous mapping knowledge. Therefore, retention of word-
object mappings might not be as consistently high as 
previously believed (Carey & Bartlett, 1978). Instead, it is 
very likely that word learning is a context dependent process 
that involves accumulating partial knowledge over a long 
time scale (Bion et al., 2013).  

Despite the debate on whether word learning is a “fast 
mapping” procedure or a gradual statistical one, recent 
computational modeling results of these two models reveal 
that hypothesis testing model can actually be viewed as a 
special case of the associative learning model, suggesting 
that representations of these two models are exchangeable 
(Yu & Smith, 2012). Therefore, real world word learning is 
very likely to involve both learning mechanisms and 
individuals’ learning pattern is sensitive to the structure of 
information provided (Romberg & Yu, 2014).  

Our view of word-referent learning as a continuous 
statistical learning process is supported by the current 
findings. By investigating both highly ambiguous and 
unambiguous learning events and the interaction between 

the two, we believe that both types of learning instances 
contribute to a continuous process of word learning. 
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